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ABSTRACT 
In this paper, an iterative forecasting methodology for time series prediction that integrates wavelet de-noising 

and decomposition with an Artificial Neural Network (ANN) and Bootstrap methods is put forward here. 

Basically, a given time series to be forecasted is initially decomposed into trend and noise (wavelet) components 

by using a wavelet de-noising algorithm. Both trend and noise components are then further decomposed by 

means of a wavelet decomposition method producing orthonormal Wavelet Components (WCs) for each one. 

Each WC is separately modelled through an ANN in order to provide both in-sample and out-of-sample 

forecasts. At each time t, the respective forecasts of the WCs of the trend and noise components are simply 

added to produce the in-sample and out-of-sample forecasts of the underlying time series. Finally, out-of-sample 

predictive densities are empirically simulated by the Bootstrap sampler and the confidence intervals are then 

yielded, considering some level of credibility. The proposed methodology, when applied to the well-known 

Canadian lynx data that exhibit non-linearity and non-Gaussian properties, has outperformed other methods 

traditionally used to forecast it. 

Keywords - Artificial neural networks, bootstrap sample, forecasts, time series, wavelet de-noising, wavelet 

decomposition.

 

I. Introduction 

Based on [1], an arbitrary time series  

(t=1,…,T) can be expanded, at each time t, as 

follows: + , wherein  and  are the 

deterministic and the independent stochastic 

components, respectively. From the theory of 

Wavelet Analysis, there are two commonly adopted 

ways of decomposing a given time series. They are 

usually referred to as  wavelet decomposition of level 

r, proposed by [2], and wavelet de-noising, proposed 

by [3]. In one hand, by means of a wavelet 

decomposition of level r,  (t=1,…,T) can be 

separated into r+1 WCs - namely, a WC of 

approximation  (t=1,…,T), and r WCs of detail 

,…,  (t=1,…,T). Mathematically talking, it 

follows that , for all 

t=1,…,T. On the other hand, through wavelet de-

noising,  (t=1,…,T) can be decomposed, at each 

time t, as  + , wherein  and  

consist, respectively, of the deterministic and 

independent stochastic WCs of the state . It is  

 

 

usual to assume that the collection (t=1,…,T) of 

(wavelet) is independent; however, the conventional 

wavelet de-noising algorithms cannot guarantee this 

statistical property, because they are based on 

heuristics, and not statistical tests. Accordingly, it is 

absolutely plausible to suppose that the wavelet 

noises have either a linear or a non-linear structure of 

auto-dependence (as in [1]) so that a linear or a non-

linear time series methodology may be appropriately 

adopted . In this paper, a case study is presented 

where  (t=1,…,T), as well as its  WCs (from a 

wavelet decomposition of level ), is modeled by 

ANN methods possessing good forecasting power.  

There is a body of literature on time series 

modelling with a number of forecasting 

methodologies that integrate a wavelet preprocessing 

algorithm (commonly, the wavelet decomposition of 

level r or the wavelet de-noising) with an ANN 

algorithm (see e.g., [4]). Those methodologies, 

known generically as wavelet ANN methods, usually 

adopt one of the two following approaches: (1) 

performing an initial wavelet decomposition of level 

r of  (t=1,…,T) that generates r+1 WCs, followed 

by modelling each WC individually with an ANN 
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method to generate forecasts of the WCs that are 

simply added to produce forecasts of  (t=1,…,T); 

or (2) applying an initial wavelet de-noising 

algorithm to  (t=1,…,T) to obtain the de-noised 

series (t=1,…,T), followed by modelling 

 with an ANN method with the 

de-noised error (t=1,…,T) being removed. In [2] 

and [3], it may be seen, respectively, that both 

approaches (1) and (2) achieve remarkable 

forecasting accuracy gains. Although it is well-

known that wavelet ANN methods usually 

outperform traditional methods not based on wavelet 

preprocessing, those are still useful in automatically 

determining the best wavelet ANN method to be 

adopted, as well as proposing way of calculating 

interval predictions.  

Note that unlike current wavelet ANN 

approaches described above, the method proposed in 

this paper integrates, in an interactive way, both 

wavelet decomposition and wavelet de-noising with 

the ANN methods as we shall see. In addition, it 

generates predictive densities by means a 

conventional Bootstrap sampler and the confidence 

intervals then further are produced.  

The current paper is divided into four sections. 

Section 1 sets the context of the proposed 

methodology and introduces notation adopted in the 

work. Section 2 describes in detailed the proposed 

methodology. Section 3 shows the statistical results 

of the application of the proposed method to the time 

series of Canadian lynx data including a comparative 

analysis with other methodologies. Finally, Section 4 

closes the paper. 

 

 

II. Proposed Methodology 

Assume that  (t=1, …, T) represents a time 

series for which h steps-ahead point and interval 

forecasts are required. The method proposed here 

follows the following five steps: (1) A wavelet de-

noising algorithm is applied to  (t=1,…,T) 

producing the wavelet series  (t=1,…,T) and 

 (t=1,…,T) (referred to as trend and noise 

components, respectively) such that 

 for  t=1,…,T; (2) A Wavelet 

Decomposition (WD) of level of the trend 

component  (t=1,…,T) and a WD of level  the 

noise component  (t=1,…,T), where  or 

, are performed to generate  WCs of 

 (t=1,…,T) and  WCs of  (t=1,…,T). 

Accordingly,  WCs (time wavelet 

subseries of  (t=1,…,T)) are produced here; (3) 

each WC from Step (2) is separately modeled by a 

multilayer perceptron ANN method (see e.g. [5]) to 

produce h steps-ahead in-sample and out-sample 

forecasts; (4) for each time t, the forecasts of the 

WCs from Step (3) are added to provide the in-

sample and out-sample forecasts of  (t=1,…,T), 

namely  (t=1,…,T+h); and (5) for each instant out-

of-sample, generate the empirical densities by using 

the Bootstrap sampler (as in [1]). 

The four steps above are illustrated in the 

diagram in Fig. 1. 
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Figure 1 – Flowchart of the four steps of the proposed methodology. 
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Note from to box on the top of Figure 1 that a 

training sample (or in-sample) is chosen from the 

time series such that the model can be determined 

from that sample and used for testing in the out-of-

sample. An interactive computational algorithm is 

used to determine the optimal parameters of the 

proposed method. Optimal parameters here refer to 

the ones associated with the model that produces in-

sample forecasts with the smallest mean squared 

error (MSE) as in [1]. Note that in Step (1), the 

parameters to be optimized are: (i) the level p of the 

wavelet decomposition and the wavelet orthonormal 

basis (WOB) (as in [6]), (ii) the thresholding rule, 

and (iii) the threshold (see e.g. [7]). In Step (2), both 

and , in addition to the two WOBs involved, are 

the parameters to be optimized. Finally, in Step (3), 

the ANN parameters are the preprocessing, the 

activation function and the number of neurons in the 

hidden and in the output layers, the window length 

and the training algorithm (see e.g. [4]). 

III. Numerical Results 
In this section the well-known annual time series 

of Canadian lynx was used to show the effectiveness 

and the power of the proposed method. In this 

experiment, only one-step-ahead predictions were 

considered with a forecasting horizon of 14 time 

periods (i.e., h=14). Those choices were made purely 

by convenience in accordance with the other methods 

that were considered for comparison. The underlying 

time series, shown in Fig. 2, consist of the number of 

lynx trapped per year in the Mackenzie River district 

of Northern Canada and cover the period from 1821 

to 1934 with a total of 114 observations. Note that 

despite not exhibiting trend the data shows irregular 

cyclical behavior unsuitable to be modelled by a 

linear model. 

 

 

 

 
Figure 2–Annual time series of Canadian lynx (1821-1934). 

 

According to [5], this data set has also been 

extensively analyzed in time series literature with a 

focus on non-linear and non-Gaussian modeling. 

Following the research of other authors, the 

logarithms (to base 10) of Canadian lynx time series 

were adopted in all projections and analysis here.  

For evaluating its predictive performances, the 

out-of-sample mean absolute error (MAE), the mean 

absolute percentage error (MAPE) and the mean 

squared error (MSE) were calculated. The time 

series was split into a training sample of size 100 (t 

= 1, …, 100) and a testing sample of size 14 (t=101, 

…, 114). The training sample was used exclusively 

to obtain the optimal parameters of the wavelet ANN 

method described in Section 2; whereas the test 

sample was only used to evaluate its accuracy. The 

five steps of the proposed method were implemented 

by an interactive computational algorithm in 

MATLAB R2013a. 

 

3.1Modeling 

The training sample of the log-transformed 

annual Canadian lynx (non-linear) time series is 

represented by  (t=1,…,100). In Step (1) the 

wavelet decomposition of level r took integer values 

from 1 to 6. For obtaining the best WOBs, the Haar 

(as in [6]), the Daubechies (as in [8]), the Coifelet 

and the Symelet (as in [7]) families were tested with 

the hard and soft thresholding rules (see e.g. [7]) as 

well as Stein’s Unbiased Risk Estimate (SURE) and 

universal thresholds (see [9] and [10], respectively). 

In Step (2),  and  also took values from 1 to 6, 

and the same WOBs tested in Step (1) were used 

here as parameters. Finally, in Step (3), the ANN 

parameters to be tested were the premnmx and the 

score in the preprocessing stage, the linear and the 

hyperbolic tangent for the activation function in the 

hidden and the output layers; the window length 

took integer values from 1 to 10; and the 

Levemberg-Marquardt’s algorithm was used for 

training (as in [4]). Following all the interactions 

carried out by MATLAB, the best configuration 

achieved for the proposed method is detailed below. 

Step 1: Haar’s wavelet orthonormal basis, wavelet 

decomposed of level 2, universal threshold and soft 

thresholding rule; 

Step 2: wavelet decomposition of level 2, with the 

Daubechies’s WOB with null moment 10 (db10), for 

the trend component; and wavelet decomposition of 

level 2, with the Daubechies’s WOB with null 

moment of 12, for the noise component; 
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Step 3:for modeling the six WCs from Step (2), the 

best simultaneous configuration is a premnmx 

preprocessing with a window of 12, a hidden layer 

of 14 neurons with hyperbolic activation function 

and an output layer of one neuron with linear 

activation function. 

Table 1 below shows the MSE, the MAE and the 

MAPE statistics regarding the out-of-sample 

forecasts of 11 competing predictive methods. The 

optimum proposed method is highlighted at the 

bottom of the table. The meaning of the acronyms 

associated with each predictive method can be found 

in Appendix I. 

 

Table 1- Comparison for the log-transformedCanadian lynx time series. 

Authors PredictiveMethods 
h=14 

MSE MAE MAPE 

Zhang (2003), [5]  

ARIMA model 0.020486 0112255 - 

ANN 0.020466 0.112109 - 

hybrid method 0.017233 0.103972 - 

Kajitani (2005), [11]  SETAR 0.01400 - - 

Aladag (2009), [12]  Hybrid 0.00900 - - 

Khashei and Bijari(2010), [13]  ANN(p,d,q) 0.01361 0.089625 - 

Khashei and Bijari (2011), [14]  ANNs/ARIMA  0.00999 0.085055 - 

Zheng and Zhong(2011), [15]  
BS-RBF 0.002809 - 1.42% 

BS-RBFAR 0.002199 - 1.18% 

Khashei and Bijari (2012), [16] 
ARIMA/PNN model  0.01146 0.084381 - 

ANN/PNN model  0.01487 0.079628 - 

Karnaboopathy andVenkatesan (2012), [17] FRAR 0.00455 - - 

Adhikari and Agrawal (2013), [18] 

ARIMA 0.01285 - 3.28% 

SVR 0.05267 - 5.81% 

Ensamble 0.00715 - 2.07 % 

Ismail and Shabri (2014), [19]  
SVR 0.0085 0.07460 - 

LSSVR 0.00300 0.04180 - 

Current Proposed method 0.00017 0.010396 0.36% 

 

Fig. 3 shows the plots of the actual observed 

values and the out-of-sample point and interval 

predictions produced by the proposed method. Note  

 

 

that the predictive accuracy was so high that it is 

difficult to distinguish between the two. Furthermore, 

there is no violation of the out-of-sample predictive 

intervals. 
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Figure 3- Out-of-sample actual values and predictions of the proposed method. 

 

IV. Conclusions 
It can be seen from Table 1 that the proposed 

method proposed here obtained remarkably better 

results than any of the ten other predictive methods 

on all three out-of-sample performance measures. In 

fact, the proposed ANN method outperformed the 

second best method, the BS-RBFAR of [15], by 

92.27% in terms of the MSE and by 69.50% 

regarding the MAPE statistic. It also outperformed 

the LSSVR of [19] by 75.14% on the MAE measure. 
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In addition, it is clear from Figure 3 that the observed 

values and the predictions produced by the proposed 

method over the out-of-sample period are strongly 

correlated, implying that a high predictive power was 

achieved in the Canadian lynx data application; in 

addition, the predictive intervals exhibited efficiency 

once no real states have violated their inferior and 

superior limits.   

Ultimately, it is also worth pointing out that, 

despite the relative complexity of the mathematical 

techniques that integrate the proposed method, its 

operational implementation is indeed relatively 

straightforward with use of appropriate software such 

as MATLAB. 
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Appendix I:The meanings of the acronyms in Table 

1. 

ARIMA: Auto-Regressive Integrated with Moving 

Average. 

ANN: Artificial Neural Networks. 

SETAR: Smoothing Exponential Transition Auto-

Regressive. 

BS-RBF: Radial Basis Function (RBF) neural 

network based on Binomial Smoothing (BS). 

BS-RBFAR:Radial BasisFunction (RBF) neural 

network and Auto-Regression (AR) model based on 

Binomial Smoothing(BS) technique. 

PNN: Probabilistic Neural Network. 

FRAR: Full Range Auto-regressive Model. 

SVR: Support Vector Regression. 

LSSVR: Least Square Support Vector Machine. 


